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1. The sum of the squares of four consecutive positive integers is 1374. Find the smallest of the four consecutive 

integers.      

    

 
 

2. Find the smallest real number, x, for which  
2

2

2 3
0

3 10 8

x x

x x

+


− +
.    

 

 
      

3.  Let L(N) denote the sum of the smallest and the largest prime factors of the integer N, N > 2. For example 

L(750) = 7 (since 3750 2 3 5=    and 2 + 5 = 7) and L(81) = 6 (since 481 3=  and 3 is both the smallest and largest 

prime factor of 81 so that L(81) = 3 + 3 = 6). Find the smallest four-digit positive integer N for which L(N) = 4.   

 

 
 

4.  A committee composed of either 4 or 5 members is to be formed; members are to be chosen from 5 people in 

group A, 3 people in group B or 4 people in group C. At least one from group B must be chosen and at most 3 

from any of the three groups may be chosen. How many such committees can be formed?    
 

 
  

5. The horizontal line with equation y = -14 is tangent to the graphs (on a coordinate plane) of both 

5cos(2 ) 3sin( ) 3y x x c= − +  and 4csc( ) 5y x c= − + ; where c is an integer. Find c.    

 

   
 

6.  Express the number .472397239... .47239N = =  in rational form (i.e. in the form 
n

m
 where n and m are 

positive integers), reduced to lowest terms.    

 

 
 

7.  Four integers are randomly chosen from the set S = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} without replacement. Find the 

probability that the four integers chosen (when arranged in order of size) form an arithmetic progression.     
                                

   
 

8. Consider equations I: 2 0x bx c+ + =  and II: 2 0,x dx f+ + =  where b, c, d, and f are nonzero real numbers. 

The discriminant of equation I is 5. The roots of equation I are triple the roots of equation II. Find the 

discriminant of equation II.      



9.  Find all ordered triples (x, y, z) of real numbers which simultaneously satisfy the 

equations:
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10. Right triangle 
0 4QP P   has base 

0QP  and right angle 
0 4QP P . Side 

0 4P P  is divided into four segments by points 

1 2 3, ,P P P  with 
1P  between 

0P  and 
2P , 

2P  between 
1P  and 

3P , 
3P  between 

2P  and 
4P . 0QP  is 240 feet long, 0 4P P

 
is 180  feet long. Denote the area of triangle 

0 1QP P  by A1 , of triangle 
1 2QPP  by A2, of triangle 

2 3QP P  by A3  and 

of triangle 
3 4QP P  by A4. If A4 exceeds A2 by 7680 ft2, A3 exceeds A2 by 1680 ft2,  and A1 exceeds A2 by 4560 ft2, 

find the area and perimeter of triangle 
2 3.QP P

 
 

 

 

11. Find all positive real numbers x which satisfy the equation 

( ) ( ) ( ) ( )
4 3 2

16 16 16 1664 log 136 log 86 log 11 log 3 0x x x x+ + + − = .    

                                              
                                                  

12. Consider the complex numbers 1 + i and 3 i− − , where 2 1i = − . Find the largest positive 2-digit integer N 

for which ( )1
N

i+  is a negative integer  and  ( )3
N

i− −  is a positive integer.   

 

 

13. The ellipse 2 216 25 400x y+ =  and the parabola 2 12y x=  lie on a coordinate plane and intersect in two 

points, A and B. Find an equation of the circle with center at the origin which passes through points A and B. 

 

 

14. A train goes from A to B to C to D, a distance of 319 miles. The distance from A to B is 33 miles more than 

the distance from B to C and the distance from B to C is 11 miles more than the distance from C to D. On "Slow 

Day", the train travelled at rate r1 from A to B, then at a rate (r2) half of r1 from B to C, and then at a rate (r3) two-

thirds of r1 from C to D. The usual rate for the entire trip is r1 . It took 13/6 hours longer on "Slow Day" from A 

to D than it usually takes. Find the rate r1 .      

 

                                       

15. Let 2

1 21,  ( 1)( 1)P x P x x= + = + −  and 2 3

3 ( 1)( 1)( 1)P x x x= + − + , where x is a real number and not an integer. 

Find a rational number x which is a solution of the equation 
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16. Triangle ABC has base BC with points D, E and F on BC, D between B and E, E between D and F, and F 

between E and C. Line segment AD is perpendicular to side BC at D, the length of side AB is 2 inches, and the 

degree measure of each of the angles BAD, DAE, EAF, FAC is 15○. By how many inches does the perimeter of 

triangle AFC exceed the perimeter of triangle AEF? (Give the answer in exact form.) 

 


