SETON HALL UNIVERSITY

TWENTYFIFTH ANNUAL

JOSEPH W. ANDRUSHKIW

MATHEMATICS COMPETITION

- 1. The sum of the squares of four consecutive positive integers is 1374. Find the smallest of the four consecutive integers.
- 2. Find the smallest real number, x, for which $\frac{2x^2 + 3x}{3x^2 10x + 8} \le 0$.
- 3. Let L(N) denote the sum of the smallest and the largest prime factors of the integer N, N > 2. For example L(750) = 7 (since $750 = 2 \cdot 3 \cdot 5^3$ and 2 + 5 = 7) and L(81) = 6 (since $81 = 3^4$ and 3 is both the smallest and largest prime factor of 81 so that L(81) = 3 + 3 = 6). Find the smallest four-digit positive integer N for which L(N) = 4.
- 4. A committee composed of either 4 or 5 members is to be formed; members are to be chosen from 5 people in group *A*, 3 people in group *B* or 4 people in group *C*. At least one from group *B* must be chosen and at most 3 from any of the three groups may be chosen. How many such committees can be formed?
- 5. The horizontal line with equation y = -14 is tangent to the graphs (on a coordinate plane) of both $y = 5\cos(2x) 3\sin(x) + 3c$ and $y = 4\csc(x \pi) + 5c$; where c is an integer. Find c.
- 6. Express the number N = .472397239... = .47239 in rational form (i.e. in the form $\frac{n}{m}$ where n and m are positive integers), reduced to lowest terms.
- 7. Four integers are randomly chosen from the set $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ without replacement. Find the probability that the four integers chosen (when arranged in order of size) form an arithmetic progression.
- 8. Consider equations I: $x^2 + bx + c = 0$ and II: $x^2 + dx + f = 0$, where b, c, d, and f are nonzero real numbers. The discriminant of equation I is 5. The roots of equation I are triple the roots of equation II. Find the discriminant of equation II.

9. Find all ordered triples
$$(x, y, z)$$
 of real numbers which simultaneously satisfy the $x^2 + y^2 - z^2 = 1$ equations: $x + y - 5z = 2$ $2x - y + 2z = 1$

- 10. Right triangle QP_0P_4 has base QP_0 and right angle QP_0P_4 . Side P_0P_4 is divided into four segments by points P_1, P_2, P_3 with P_1 between P_0 and P_2, P_2 between P_1 and P_3, P_3 between P_2 and P_4 . $\overline{QP_0}$ is 240 feet long, $\overline{P_0P_4}$ is 180 feet long. Denote the area of triangle QP_0P_1 by A_1 , of triangle QP_1P_2 by A_2 , of triangle QP_2P_3 by A_3 and of triangle QP_3P_4 by A_4 . If A_4 exceeds A_2 by 7680 ft², A_3 exceeds A_2 by 1680 ft², and A_1 exceeds A_2 by 4560 ft², find the area and perimeter of triangle QP_2P_3 .
- 11. Find all positive real numbers x which satisfy the equation $64(\log_{16} x)^4 + 136(\log_{16} x)^3 + 86(\log_{16} x)^2 + 11(\log_{16} x) 3 = 0$.
- 12. Consider the complex numbers 1 + i and $-\sqrt{3} i$, where $i^2 = -1$. Find the largest positive 2-digit integer N for which $(1+i)^N$ is a negative integer and $(-\sqrt{3}-i)^N$ is a positive integer.
- 13. The ellipse $16x^2 + 25y^2 = 400$ and the parabola $y^2 = 12x$ lie on a coordinate plane and intersect in two points, A and B. Find an equation of the circle with center at the origin which passes through points A and B.
- 14. A train goes from A to B to C to D, a distance of 319 miles. The distance from A to B is 33 miles more than the distance from B to C and the distance from B to C is 11 miles more than the distance from C to D. On "Slow Day", the train travelled at rate r_1 from A to B, then at a rate (r_2) half of r_1 from B to C, and then at a rate (r_3) two-thirds of r_1 from C to D. The usual rate for the entire trip is r_1 . It took 13/6 hours longer on "Slow Day" from A to D than it usually takes. Find the rate r_1 .
- 15. Let $P_1 = x+1$, $P_2 = (x+1)(x^2-1)$ and $P_3 = (x+1)(x^2-1)(x^3+1)$, where x is a real number and not an integer. Find a rational number x which is a solution of the equation $\frac{x}{P_1} \frac{P_1(x-1)}{P_2} \frac{P_2(x^3-1)}{P_3} = \frac{-100}{243P_3}$.
- 16. Triangle ABC has base BC with points D, E and F on BC, D between E and E, E between E and E, and E between E and E. Line segment E is perpendicular to side E at E the length of side E is 2 inches, and the degree measure of each of the angles E and E between E and E is 15°. By how many inches does the perimeter of triangle E and E is 15°. By how many inches does the perimeter of triangle E is 15°. By how many inches does the perimeter of triangle E is 15°.